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1 Functions from Rn to Rm

So far we have looked at functions that map one number to another number, i.e. that map from R to
R. Often, however, we encounter functions of more than one variable. For example, a utility function
takes as input consumption of good 1, x1 and consumption of good 2, x2, and assigns to them a utility
level: u = u(x1, x2). In this case, the function maps from R2 ( R2

+ strictly speaking) to R. In general,
a function that takes n input variables and maps them to one output variable is said to map from Rn
to R.
On the other hand, there are also functions that take one input variable and map it to several output
variables. For example, a function that predicts the state of the economy takes time t as input variable
and assigns to it a level of GDP and of the capital stock: E(t) = (Y (t),K(t)). In this case, the function
maps from R to R2. In general, a function that takes one input variables and maps it to m output
variables is said to map from R to Rm. Note that a function f : R → Rm is really nothing else than
an array of m functions, each mapping from R to R:

f(x) = (f1(x), f2(x), . . . , fm(x)).

Of course a function can take multiple input variables and multiple output variables. For example,
a production function takes capital K, labor L and intermediate product x as input and assigns to
it the level of �nal good 1, y1, and �nal good, y2: (y1, y2) = f(K,L, x). In this case, the function
maps from R3 to R2. In general, a function that takes n input variables and maps them to m output
variables is said to map from Rn to Rm. Note that again we can think of a function f : Rn → Rm as
an array of m functions, each mapping from Rn to R:

f(x1, x2, . . . , xn) = (f1(x1, x2, . . . , xn), f2(x1, x2, . . . , xn), . . . , fm(x1, x2, . . . , xn)).

It is hard to visualize functions in higher dimensions graphically. One way to picture a function is to
look at its level sets. Consider a function f(x) with x = (x1, . . . , xn). A level set is the set of all x's
such that f(x) = c, where c is some speci�ed constant. For example, indi�erence curves are level sets,
as are isoquant curves.

2 Derivatives of a Single Function of Several Variables

2.1 Partial Derivatives

Let f be a function of many variables, e.g. f(x) = f(x1, x2, . . . , xn). The partial derivative of f with
respect to x1, denoted

∂f
∂x1

or fx1
, is the function obtained by di�erentiating f with respect to x1 and

treating all other variables as constants. Rigorously, this is

fx1
(x1, x2, . . . , xn) = lim

h→0

f(x1 + h, x2, . . . , xn)− f(x1, x2, . . . , xn)
h

1
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Interpretation: ∂
∂x1

f(x) is the change in the value of the function if x1 changes in�nitesimally. It is
the slope of the tangent line to the graph of f at point x in the x1-direction.

Example:

Let f(x, y) = x2y3. Then
∂f

∂x
= 2xy3

2.2 The Total Derivative or Gradient

The total derivative is merely a vector containing all of the partial derivatives of a function,

Df(x1, x2, . . . , xn) =

(
∂f

∂x1
,
∂f

∂x2
, . . .

∂f

∂xn

)
The transpose of this vector, evaluated at a speci�c point a = (x∗1, x

∗
2, . . . x

∗
n) is called the gradient of

f at a, or ∇f(a). The vector ∇f(a) points into the direction in which f increases most rapidly from

Interpretation: The gradient is a "list" of the changes in the value of the function if each variable
separately changes in�nitesimally: The �rst element tells us how much f changes if x1 changes a tiny
bit, the second element tells us how much f changes if x2 changes a tiny bit etc. It gives the slopes
of the tangent lines to the graph of f at point x in each of the coordinate directions.

The vector ∇f(a) also happens to point into the direction in which f increases most rapidly from
point a, i.e. ∇f(a) gives the direction of steepest ascent.

Example:

Let f(x, y) = x2y3, and a = (1, 2). Then

∇f =

(
2xy3

3x2y2

)
and

∇f(a) =
(

16
12

)

2.3 The Total Di�erential

The total di�erential of a function f(x1, x2, . . . , xn) at a point a = (x∗1, x
∗
2, . . . , x

∗
n) is

df =
∂f

∂x1
(a)dx1 +

∂f

∂x2
(a)dx2 + . . .+

∂f

∂xn
(a)dxn.

Interpretation: The interpretation of the total di�erential is easy to see by looking at a tangent
plane to the function f(x, y). Let dx and dy be thought of as small deviations from the points x∗

and y∗ respectively. The total di�erential states that the change in the value of the function f from
this small deviation from (x∗, y∗) to (x∗ + dx, y∗ + dy) is the slope of the plane at (x∗, y∗) in the x
direction times the deviation dx, plus the slope of the plane at (x∗, y∗) in the y direction times the
deviation dy.

Example:

Given a utility function of the form U(C,N) = ln(C) + ln(N), �nd the approximate change in utility
by consuming an additional 0.1 units of C and less 0.1 units of N . Assume the individual originally
was consuming 0.5 units of each.
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dU ≈ 1

C
dC +

1

N
dN =

1

0.5
0.1 +

1

0.5
(−0.1) = 0

Note that the total di�erential is only valid with equality as (dx, dy)→ (0, 0). Otherwise it is only an
approximation.

2.4 Second order partial derivatives

The second order partial derivative is just a partial derivative of a partial derivative. The derivative
with respect to xi of the derivative with respect to xj of the function f , or ∂

∂xi
( ∂f∂xj

), is denoted by

∂2f
∂xi∂xj

.

Example:

Let f(x, y) = x2y3. Then
∂2f

∂x2
= 2y3

∂2f

∂y2
= 6x2y

∂2f

∂x∂y
= 6xy2

∂2f

∂y∂x
= 6xy2

Notice that ∂2f
∂x∂y = ∂2f

∂y∂x .

The Hessian Matrix

The Hessian is merely a matrix of the second order partial derivatives of a function. Consider a
function f(x1, . . . , fn). Its Hessian is given by.

∂2f
∂x2

1

∂2f
∂x2∂x1

. . . ∂2f
∂xn∂x1

∂2f
∂x1∂x2

∂2f
∂x2

2
. . . ∂2f

∂xn∂x2

...
...

. . .
...

∂2f
∂x1∂xn

∂2f
∂x2∂xn

. . . ∂2f
∂x2

n

 .

Note that a Hessian matrix of f is always a square symmetric matrix if f ∈ C2 by Young's theorem
(p.330 in SB), Clairaut's theorem, or Schwarz's theorem.

Example:

Let f(x, y) = x2y3. Then the Hessian is (
2y3 6xy2

6xy2 6x2y

)
.

Problem:

1. Find the Hessian of 1
x1

+ 1
x2

+ ex3 .
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2. Check the second order partial derivatives of

f(x, y) =

{
xy(x2−y2)
x2+y2 for (x, y) 6= (0, 0)

0 for (x, y) = (0, 0)

at (0, 0).

2.5 Chain Rule

Let x(t) = (x1(t), . . . , xn(t)). Also, let f be some function of x(t). Then

df

dt
(x(t)) =

∂f

∂x1
· dx1
dt

+ · · ·+ ∂f

∂xn
· dxn
dt

.

Example:

Let K (capital stock) and L (labor stock) be functions of time, such that dKdt = sY −δK and dL
dt = nL.

If Y = KαL1−α, what is dY
dt ?

dY

dt
=
∂Y

∂K
· dK
dt

+
∂Y

∂L
· dL
dt

dY

dt
= α

(
L

K

)1−α

· (sY − δK) + (1− α)
(
K

L

)α
· nL

dY

dt
=

{
α

[
s

(
L

K

)1−α

− δ

]
+ (1− α)n

}
· Y

Problem: (The Solow Growth Model)

Let k = K
AL , n = dL/dt

L , g = dA/dt
A , dKdt = sY − δK, and f(k) = Y

AL . Find
dk
dt .

2.6 Directional Derivatives

Assume a function f(x), where x = (x1, . . . , xn) is a point in Rn. Now let there be a vector v =
(v1, . . . , vn), and a parameter t. The point of a directional derivative is to see how the value of the
function f(x) changes as we move along the vector v from the original point x. A line can be drawn
from x along v in Rn by constructing a point x+ t · v, and allowing t to vary. De�ne a new function
g(t) = f(x+ t · v) = f(x1 + t · v1, . . . , xn + t · vn), and derivate it with respect to t,

dg

dt
=

∂f

∂x1
(x1 + t · v1, . . . , xn + t · vn) · v1 + · · ·+

∂f

∂xn
(x1 + t · v1, . . . , xn + t · vn) · vn.

Since we are interested in the change of f at the original point x, we let t = 0 to get

dg

dt
(0) =

∂f

∂x1
(x1, . . . , xn) · v1 + · · ·+

∂f

∂xn
(x1, . . . , xn) · vn = [∇f(x)]′ · v.

This is the directional derivative. It is merely the dot product of the total derivative at x with the
vector v. Other notiations are Dfx · v or ∂f

∂v (x).

3 Derivatives of Multiple Functions of Several Variables

Instead of assuming we have one function f , say we now have m equations which are each a function
of n variables:

y1 = f1(x1, . . . , xn)
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...

ym = fm(x1, . . . , xn)

As noted above, we can denote this as a single function f which is a function from Rn to Rm. (Why?
Because we can think of the system of equations as a box into which we throw n inputs (the x's) and
get m outputs (the y's)).

Recall that the total derivative of any function f is

Df =
(

∂f
∂x1

. . . ∂f
∂xn

)
How do we interpret ∂f

∂x1
? Since f is actually m functions, we say that

∂f

∂x1
=


∂f1
∂x1

...
∂fm
∂x1


Therefore, Df is now an n×m matrix called the Jacobian matrix

Df(x∗) =


∂f1
∂x1

(x∗) . . . ∂f1
∂xn

(x∗)
...

. . .
...

∂fm
∂x1

(x∗) . . . ∂fm
∂xn

(x∗)


where x∗ is a particular value of x = (x1, . . . , xn).

Example:

Find the Jacobian of the following system:

W (X,Y ) =
X

Y

V (X,Y ) = XY

Notice that

DW = (
1

Y
,− X

Y 2
)

and

DV = (Y,X),

so the Jacobian is (
1
Y − X

Y 2

Y X

)
.

Problem: Find the Jacobian of the following function F (Y1, Y2) : R2 → R2

X1 =
√
Y1Y2,

X2 =

√
Y2
Y1
.
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4 Integration over Several Variables

Let f be a function of several variables. For simplicity we assume f to be a function of two variables,
f : R2 → R. The integral ˆ b

a

f(x, y)dx

is simply computed by treating f(x, y) as a function of x only, that is, y is treated as a constant. Note
that the result of the integration will be a function of y.

Example:

Evaluate
´ 4
2
(x+ y)dx. ˆ 4

2

(x+ y)dx = (
1

2
x2 + xy)|42 = 6 + 2y

4.1 Double and Higher Order Integrals

In order to evaluate the double integral

ˆ b

a

ˆ d

c

f(x, y)dxdy

it is helpful to rewrite the integral as

ˆ b

a

(ˆ d

c

f(x, y)dx

)
dy

and evaluate the inside integral �rst. Then the outside integral can be evaluated to obtain the solution.

Example:

Evaluate
´ 2
1

´ 4
2
(x+ y)dxdy.

ˆ 2

1

ˆ 4

2

(x+y)dxdy =

ˆ 2

1

(ˆ 4

2

(x+ y)dx

)
dy =

ˆ 2

1

(
(
1

2
x2 + xy)|42

)
dy =

ˆ 2

1

(6 + 2y) dy = 6y+y2|21 = 9.

Triple integrals (and higher order integrals) are evaluated in the same manner as doubles; we �rst
integrate with respect to one variable and work our way back to lower order integrals.

ˆ b

a

ˆ d

c

ˆ f

e

f(x, y, z)dxdydz =

ˆ b

a

(ˆ d

c

(ˆ f

e

f(x, y)dx

)
dy

)
dz

4.2 Order of Integration

The limits of integration will only be scalar if we are integrating over a rectangle (or its equivalent in
higher dimensions). In many cases, the simplicity of the order of integration does not matter.

Example:

Recall the double integral
´ 2
1

´ 4
2
(x + y)dxdy above which we evaluated with respect to x �rst. Now

evaluate with respect to y �rst.

ˆ 4

2

ˆ 2

1

(x+ y)dydx =

ˆ 4

2

(ˆ 2

1

(x+ y)dy

)
dx =

ˆ 4

2

(
(
1

2
y2 + xy)|21

)
dy =
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=

ˆ 4

2

(
3

2
+ x

)
dy =

3

2
y +

1

2
y2|42 = 3 + 6 = 9.

However, we are integrating with respect to variables that are also in the limits of integration, then
di�erent orders of integration in�uence the di�culty of the problem. To see this, consider the integral
of f(x, y) over the region R = {1 ≤ y ≤ 2, y ≤ x ≤ y2}. By drawing the area of integration, we can
easily see that integrating with respect to x �rst is much easier. Notice that the region R is equivalent
to the region S = {1 ≤ x ≤ 2, x ≤ y ≤

√
x} ∪ {2 ≤ x ≤ 4, 2 ≤ y ≤

√
x}. If I integrate with respect

to y �rst, I must split the integral into two parts, since the bounds of integration in the x direction
change at x = 2.

Example:

Evaluate
´ 2
1

´ 2x
x
xy2dydx with respect to y �rst:

ˆ 2

1

ˆ 2x

x

xy2dydx =

ˆ 2

1

(
1

3
xy3|2xx )dx =

ˆ 2

1

7

3
x4dx =

7

15
x5|21 =

7

15
(25 − 15) =

217

15

Now evaluate with respect to x �rst:

ˆ 2

1

ˆ 2x

x

xy2dydx =

ˆ 2

1

ˆ y

1

xy2dxdy +

ˆ 4

2

ˆ 2

y
2

xy2dxdy =

ˆ 2

1

1

2
x2y2|y1dy +

ˆ 4

2

1

2
x2y2|2y

2
dy =

=

ˆ 2

1

(
1

2
y4 − 1

2
y2)dy +

ˆ 4

2

(2y2 − y4

8
)dy = (

1

10
y5 − 1

6
y3)|21 + (

2

3
y3 − 1

40
y5)|42 =

=
31

10
− 7

6
+

112

3
− 992

40
=

217

15
.

4.3 Transformations

Consider the integral
´ b
a

´ d
c
f(x, y). As we have seen previously, integrals are sometimes easier to

evaluate when we substitute a variable u in for a function of x and y. Consider the following integral:

ˆ 3

2

ˆ x−2

0

1

(x+ y)(x− y)

We can guess that making a substitution u = x + y and v = x − y would make the integration a
lot simpler. However, there is more than meets the eye in making this transformation. Not only will
the limits of integration change, but we must also change the function itself beyond just making the
substitution.

In general, say we are given f(x, y), a region of integration, and two transformation functions u(x, y)
and v(x, y). In order to integrate using the transformation, we �rst solve the system of transformation
functions for x(u, v) and y(u, v). Then me must compute the Jacobian matrix(

∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

)
and �nd the absolute value of its determinant. We will cover determinants later, but the absolute

value of the determinant of this speci�c matrix is
∣∣∣ ∂x∂u · ∂y∂v − ∂x

∂v ·
∂y
∂u

∣∣∣ = |J |. We then go back to the

original equation f(x, y), plug in x(u, v) and y(u, v) to get a new equation g(u, v) and multiply it by
the Jacobian to get our new integrand

ˆ ˆ
g(u, v) |J | dudv.
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Finally, we must change the limits of integration. This is done simply by looking at the possible
values x and y took on, and then seeing what that would correspond to in u and v. For example, if
x, y ∈ (0, 1) and u = xy and v = x

y , we can see that u ∈ (0, 1) and v ∈ (0,∞). We then integrate over
that region.

Note that this is the generalization of the "integration by substitution" technique discussed in the
notes on single variable calculus. In the single variable case, the determinant of the Jacobian is
simply the derivative of the transformation function. There is only one subtle di�erence: In the multi-
dimensional case we use the absolute value of the determinant, in the single variable case we use the
determinant including its sign.

Example: Transform
´ 3
2

´ x−2
0

1
(x+y)(x−y)dydx using u = x+ y and v = x− y.

Solving the system for x and y we get x = u+v
2 , y = u−v

2 . The Jacobian of this system is∣∣∣∣( 1
2

1
2

1
2 − 1

2

)∣∣∣∣ = 1

2

Plugging this into the original equation, we have
ˆ ˆ

1

(u+v2 + u−v
2 )(u+v2 −

u−v
2 )
· 1
2
dudv =

ˆ ˆ
1

2uv
dudv

To �nd the new limits of integration, we notice that there are three boundaries to the original integral:
x ≤ 3, y ≥ 0, y ≤ x− 2. Substituting in for and x and y in each of these three, we get:

u+ v

2
≤ 3⇒ u+ v ≤ 6

u− v
2
≥ 0⇒ u ≥ v

u− v
2
≤ u+ v

2
− 2⇒ v ≥ 2

Plotting these three, we see that the area of integration in u, v space is now an isosceles triangle with
corners at (2, 2), (3, 3), and (4, 2). We can then set up the orders of integration so the integral now
reads ˆ 3

2

ˆ 6−v

v

1

2uv
dudv.

This is hard to integrate, so we will leave it for the interested student to do at home.

4.4 Leibnitz's Integral Rule

In order to di�erentiate under a de�nite integral, we use Leibnitz Rule:

d

dy

ˆ b(y)

a(y)

f(x, y)dx =

ˆ b(y)

a(y)

∂f

∂y
dx+ f [b(y), y]

db

dy
− f [a(y), y]da

dy

Example:

Find the derivative of
´ 1
0
x2y2dx with respect to y.

d

dy

ˆ 1

0

x2y2dx =

ˆ 1

0

2x2ydx.

Example:
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Find the derivative of
´ 3y
2y
x2y2dx with respect to y.

d

dy

ˆ 3y

2y

x2y2dx =

ˆ 3y

2y

2x2ydx+ (3y)2y2 · 3− (2y)2y2 · 2.

Problem: Di�erentiate
´ 3y−2

2y−2 x
2y2dx with respect to y.
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5 Homework

In 1st semester micro, you will solve general equilibrium models. Sometimes when solving these models
it is useful to see if utility functions are concave. One way of testing for concavity involves calculating
the function's Hessian. Find the Hessian matrices of the following utility functions (these functions
were used in previous homeworks and tests):

1. (Core Exam) U(x1, x2) =
2
3

√
x1 +

1
3

√
x2

2. (Final Exam) U(x1, x2) = x1 +
δ
αx

α
2

3. (Homework problem) U(x1, x2, x3) = − 1
x1

+ x2 − δ 1
x3

4. (Midterm Exam) U(x1, x2) =
1
3 ln(x1) +

2
3 ln(x2)

The Slutsky Equation breaks changes in demand into income e�ects and substitution e�ects. Last
semester for one of the homework problems, we were asked to calculate the Slutsky equation to �nd
the substitution e�ect and the income e�ect. In the problem, the utility function was the same as in
question 3 above, and it can be shown that the direct demand functions are

x1(p1, p2, w) =
w

3p1

x2(p1, p2, w) =
2w

3p2

Let the function x(p, w) : R3 → R2 be the combined demand function, where p = (p1, p2). The Slutsky
equation is as follows:

Dpx+Dwx · x′ = Dpv,

where the subscripts denote which derivative it is respect to (Note: these are total derivatives, not
directional derivatives) and v is the indirect utility function. Find Dpx (the total e�ect), Dwx ·x′(the
wealth e�ect), and use the above Slutsky equation to compute Dpv (the substitution e�ect). Hint:
Dpx is a 2 × 2 matrix, Dwx is 1 × 2, and x is 1 × 2. This involves matrix multiplication, something
we haven't covered yet, but that you should already know.

If the graph of a function F : R3 → R1 lives in R4, in which space does the gradient ∇F live?

Evaluate the following integrals:

1.
´ 2
0

´ 4−x2

0
xydydx

2.
´ 1
0

´√1−x2

1−x x2ydydx

3.
´ ´

xdydx for the region bounded by y = x and y = 3− x2

4.
´ 1
0

´ 1
y
x2 sin(xy)dxdy

Sketch the following regions:

1. 1 ≤ x ≤ 2, 2 ≤ y ≤ 7

2. 0 ≤ x ≤ 2, x
2

2 ≤ y ≤ x
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3. 1 ≤ x ≤ 2, x2 ≤ y ≤ x+ 2

4. 0 ≤ x ≤ 1, x2 ≤ y ≤ x

Integrate the following:

1. f(x, y) = sin(x2) over the area 0 ≤ x ≤ 2, 0 ≤ y ≤ x
2 with respect to x �rst

2. f(x, y) = sin(x2) over the area 0 ≤ x ≤ 2, 0 ≤ y ≤ x
2 with respect to y �rst

Di�erentiate the following:

1.
´ 1
x
λe−λxydy with respect to x.

2.
´ ex
x

2xexydy with respect to x.

In 1st semester econometrics, you will be asked to integrate probability density functions (or p.d.f.s)
in order to �nd the probability that certain events will occur. Sometimes it is necessary to transform
the random variables. For example, if we are given the density functions for X1 and X2, and Y1 and
Y2 as functions of X1 and X2, we can then transform this system to solve for the p.d.f.'s of Y1 and
Y2. The following problems are taken from p.d.f.'s in the �rst semester econometrics textbook, section
3.7. For each of the following,

• Find X1 and X2 as functions of Y1 and Y2

• Find the determinant of the Jacobian

• Sketch the region of integration in terms of X1 and X2

• Sketch the region of integration in terms of Y1 and Y2

• Evaluate the new integral in terms of Y1 and Y2

1. f(X1, X2) = e−X1−X2 over the region X1 > 0, X2 > 0, where Y1 = X1

X1+X2
and Y2 = X1 +X2.

2. f(X1, X2) = 8X1X2 over the region 0 ≤ X1 ≤ X2 ≤ 1, where Y1 = X1

X2
and Y2 = X2.

Hint: As a check, realize that all p.d.f.'s integrate to one. So the original integrals with respect to X1

and X2, as well as the transformed integral with respect to Y1 and Y2, should integrate to one. Try it!
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